I am able to define breaks for continous y axis, however applying the code for a discrete y axis is not working. I cannot seem to get the right script . I tried the epi handbook
The y axis shows percentages as discrete variables 1-15%, the y axis is plotted with 1% breaks, where I want to have it with 5% breaks.
the graph is geom_point
kim
1 Like
Hi Kim,
It would help if you could provide a reproducible example (reprex), or even the code you have been using so far, so that we can help diagnose the problem.
All the best,
Tim
the code is
summ_EV_prop_season$Positive ← factor(summ_EV_prop_season$Positive, levels=c(‘1%’, ‘2%’, ‘3%’,‘4%’, ‘5%’, ‘6%’,‘7%’, ‘8%’, ‘9%’,‘10%’, ‘11%’, ‘12%’,‘13%’, ‘14%’, ‘15%’,‘16%’, ‘17%’, ‘18%’,‘19%’))
summ_EV_prop_season %>%
filter(!(sample_month == "nd")) %>%
ggplot(mapping = aes(x = sample_month,
y= Positive))+
geom_point(size = 3, color = "black")+
scale_y_discrete(position = "right") +
labs(title = "Enterovirus testing",
subtitle = "all samples",
x= "years",
y= "positive %")+
theme(axis.text.x=element_text(angle=45, hjust=0.9, color = "red"),
axis.ticks.y = element_line(color = "red"),
axis.title.y = element_text(color = "red"),
axis.line.y = element_line(color = "red"),
axis.text.y = element_text(color = "red"),
axis.ticks.x = element_line(color = "red"),
axis.title.x = element_text(color = "red"),
axis.line.x = element_line(color = "red"),
)+
facet_wrap(~ year)
this is the data for 2015 in the dataframe
1 Like
Hi Kim,
This is how I would approach the problem, you should be using a continuous scale for numeric variables, such as proportions or percentages.
# loading packages
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(tibble)
# creating fake data
fake_data <- tibble(year = 2015L, sample_month = c(paste(as.character(1L:12L), month.abb, sep = " "), "nd")) |>
rowwise() |>
mutate(
count = rpois(n = 1, lambda = 1000),
positive = rbinom(n = 1, size = count, prob = 0.1) / count
) |>
ungroup()
# plotting data
fake_data |>
ggplot() +
geom_point(aes(x = sample_month, y = positive)) +
scale_x_discrete(limits = c(paste(as.character(1L:12L), month.abb, sep = " "), "nd")) +
scale_y_continuous(breaks = scales::extended_breaks(),
labels = scales::percent_format()) +
labs(x = "\nSample month", y = "Percentage of samples positive\n") +
theme_minimal()
Created on 2024-12-13 with reprex v2.1.1
Session info
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.2 (2024-10-31)
#> os macOS Sequoia 15.1.1
#> system x86_64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Toronto
#> date 2024-12-13
#> pandoc 3.2 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/x86_64/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> cli 3.6.3 2024-06-21 [1] RSPM (R 4.4.0)
#> colorspace 2.1-1 2024-07-26 [1] RSPM (R 4.4.0)
#> curl 6.0.1 2024-11-14 [1] RSPM (R 4.4.0)
#> digest 0.6.37 2024-08-19 [1] RSPM (R 4.4.0)
#> dplyr * 1.1.4 2023-11-17 [1] RSPM (R 4.4.0)
#> evaluate 1.0.1 2024-10-10 [1] RSPM (R 4.4.0)
#> fansi 1.0.6 2023-12-08 [1] RSPM (R 4.4.0)
#> farver 2.1.2 2024-05-13 [1] RSPM (R 4.4.0)
#> fastmap 1.2.0 2024-05-15 [1] RSPM (R 4.4.0)
#> fs 1.6.5 2024-10-30 [1] RSPM (R 4.4.1)
#> generics 0.1.3 2022-07-05 [1] RSPM (R 4.4.0)
#> ggplot2 * 3.5.1 2024-04-23 [1] RSPM (R 4.4.0)
#> glue 1.8.0 2024-09-30 [1] RSPM (R 4.4.0)
#> gtable 0.3.6 2024-10-25 [1] RSPM (R 4.4.0)
#> htmltools 0.5.8.1 2024-04-04 [1] RSPM (R 4.4.0)
#> knitr 1.49 2024-11-08 [1] RSPM (R 4.4.0)
#> labeling 0.4.3 2023-08-29 [1] RSPM (R 4.4.0)
#> lifecycle 1.0.4 2023-11-07 [1] RSPM (R 4.4.0)
#> magrittr 2.0.3 2022-03-30 [1] RSPM (R 4.4.0)
#> munsell 0.5.1 2024-04-01 [1] RSPM (R 4.4.0)
#> pillar 1.9.0 2023-03-22 [1] RSPM (R 4.4.0)
#> pkgconfig 2.0.3 2019-09-22 [1] RSPM (R 4.4.0)
#> R6 2.5.1 2021-08-19 [1] RSPM (R 4.4.0)
#> reprex 2.1.1 2024-07-06 [1] RSPM (R 4.4.0)
#> rlang 1.1.4 2024-06-04 [1] RSPM (R 4.4.0)
#> rmarkdown 2.29 2024-11-04 [1] RSPM (R 4.4.1)
#> rstudioapi 0.17.1 2024-10-22 [1] RSPM (R 4.4.0)
#> scales 1.3.0 2023-11-28 [1] RSPM (R 4.4.0)
#> sessioninfo 1.2.2 2021-12-06 [1] RSPM (R 4.4.0)
#> tibble * 3.2.1 2023-03-20 [1] RSPM (R 4.4.0)
#> tidyselect 1.2.1 2024-03-11 [1] RSPM (R 4.4.0)
#> utf8 1.2.4 2023-10-22 [1] RSPM (R 4.4.0)
#> vctrs 0.6.5 2023-12-01 [1] RSPM (R 4.4.0)
#> withr 3.0.2 2024-10-28 [1] RSPM (R 4.4.0)
#> xfun 0.49 2024-10-31 [1] RSPM (R 4.4.0)
#> xml2 1.3.6 2023-12-04 [1] RSPM (R 4.4.0)
#> yaml 2.3.10 2024-07-26 [1] RSPM (R 4.4.0)
#>
#> [1] /Users/timothychisamore/Library/R/x86_64/4.4/library
#> [2] /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
All the best,
Tim